13,923 research outputs found

    Constraining New Physics with D meson decays

    Get PDF
    Latest Lattice results on DD form factors evaluation from first principles show that the standard model (SM) branching ratios prediction for the leptonic DsνD_s \to \ell \nu_\ell decays and the semileptonic SM branching ratios of the D0D^0 and D+D^+ meson decays are in good agreement with the world average experimental measurements. It is possible to disprove New Physics hypothesis or find bounds over several models beyond the SM. Using the observed leptonic and semileptonic branching ratios for the D meson decays, we performed a combined analysis to constrain non standard interactions which mediate the csˉlνˉc\bar{s}\to l\bar{\nu} transition. This is done either by a model independent way through the corresponding Wilson coefficients or in a model dependent way by finding the respective bounds over the relevant parameters for some models beyond the standard model. In particular, we obtain bounds for the Two Higgs Doublet Model Type-II and Type III, the Left-Right model, the Minimal Supersymmetric Standard Model with explicit R-Parity violation and Leptoquarks. Finally, we estimate the transverse polarization of the lepton in the D0D^0 decay and we found it can be as high as PT=0.23P_T=0.23.Comment: 28 pages, 8 figures, 3 tables. Improved and extended analysis with updated form factors from Lattice QC

    A near-IR line of Mn I as a diagnostic tool of the average magnetic energy in the solar photosphere

    Get PDF
    We report on spectropolarimetric observations of a near-IR line of Mn I located at 15262.702 A whose intensity and polarization profiles are very sensitive to the presence of hyperfine structure. A theoretical investigation of the magnetic sensitivity of this line to the magnetic field uncovers several interesting properties. The most important one is that the presence of strong Paschen-Back perturbations due to the hyperfine structure produces an intensity line profile whose shape changes according to the absolute value of the magnetic field strength. A line ratio technique is developed from the intrinsic variations of the line profile. This line ratio technique is applied to spectropolarimetric observations of the quiet solar photosphere in order to explore the probability distribution function of the magnetic field strength. Particular attention is given to the quietest area of the observed field of view, which was encircled by an enhanced network region. A detailed theoretical investigation shows that the inferred distribution yields information on the average magnetic field strength and the spatial scale at which the magnetic field is organized. A first estimation gives ~250 G for the mean field strength and a tentative value of ~0.45" for the spatial scale at which the observed magnetic field is horizontally organized.Comment: 42 pages, 17 figures, accepted for publication in the Astrophysical Journal. Figures 1 and 9 are in JPG forma

    Difference schemes with point symmetries and their numerical tests

    Full text link
    Symmetry preserving difference schemes approximating second and third order ordinary differential equations are presented. They have the same three or four-dimensional symmetry groups as the original differential equations. The new difference schemes are tested as numerical methods. The obtained numerical solutions are shown to be much more accurate than those obtained by standard methods without an increase in cost. For an example involving a solution with a singularity in the integration region the symmetry preserving scheme, contrary to standard ones, provides solutions valid beyond the singular point.Comment: 26 pages 7 figure

    Mejorando la docencia universitaria: Introducción de metodologías activas de aprendizaje en aspectos fisiológicos de la conducta

    Get PDF
    Antecedentes. Los actuales planes de estudio permiten superar la tradicional división entre teoría y práctica en la docencia universitaria, artificial en términos formativos. Para que esta integración sea efectiva en la dinámica del aula, se requieren actividades que efectivamente integren conocimientos teóricos con habilidades y destrezas y que estimulen el trabajo autónomo del estudiante. Objetivos/Hipótesis. Este estudio se centra en analizar la satisfacción y percepción subjetiva de logro de competencias del alumnado universitario tras la implementación de metodologías activas de aprendizaje en una asignatura centrada en aspectos fisiológicos de la conducta. Método. Se implementaron metodologías activas de aprendizaje a 54 estudiantes (edad media: 24.17 años), incluyendo la realización de una fase experimental en el aula, la aplicación del método del caso, el desarrollo de estrategias de ludificación y la potenciación del alineamiento docente. Al final de la asignatura, se administró al alumnado un cuestionario de satisfacción. Resultados. La metodología docente fue unos de los aspectos mejor valorados por el estudiantado, seguido de los resultados del aprendizaje y, en menor medida, de la adquisición de competencias. Conclusiones. La implementación de metodologías docentes innovadoras en el ámbito universitario ha resultado satisfactoria para el estudiantado, en diferente medida en función del aspecto considerado. Background. The current curricula allow to overcome the traditional division between theory and practice in higher education teaching, artificial in formative terms. For this integration to be effective in the classroom dynamic, activities are required that effectively integrate theoretical knowledge with skills and abilities and that stimulate the independent work of the student. Objectives/hypotheses. This study focuses on analysing the satisfaction and subjective perception of achievement of competencies of university students after the implementation of active learning methodologies in a subject focused on physiological aspects of behaviour. Method. Active learning methodologies were implemented for 54 students (mean age: 24.17 years), including an experiment in the classroom, the case method, the development of gamification strategies and the strengthening of constructive alignment. At the end of the course, a satisfaction questionnaire was administered to the students. Results. The learning methodology was one of the aspects most highly valued by the students, followed by learning outcomes and, to a lesser extent, the acquisition of competences. Conclusions. The implementation of innovative learning methodologies in the university environment has been satisfactory for the students, to a different extent depending on the aspect considered

    New records of recently described chemosymbiotic bivalves for mud volcanoes within the European waters (Gulf of Cádiz)

    Get PDF
    Chemosymbiotic bivalves are important members of cold seep communities and information on their distribution in theEuropean waters is still quite scarce. This study reports the presence of living populations and shell remains of some recently described bivalves such as Lucinoma asapheus, Solemya elarraichensis and Acharax gadirae as well as Bathymodiolus sp. in the mud volcanoes of the Spanish Atlantic waters. Living populations of these species were thus far only found in Anastasya, Aveiro and Almazán mud volcanoes, together with other chemosymbiotic metazoa (Siboglinum spp.), suggesting the presence of moderate seepage activity. In other mud volcanoes (Albolote, Gazul), the benthic communities are dominated by sessile filter feeders on authigenic carbonates (chimneys, slabs) and only the shell remains of some chemosymbiotic bivalves were found, indicating earlier or very low seepage conditions. The present study elaborates on the known distribution of L. asapheus and S. elarraichensis to the European waters of the Gulf of Cádiz

    A manifold learning approach for integrated computational materials engineering

    Get PDF
    Image-based simulation is becoming an appealing technique to homogenize properties of real microstructures of heterogeneous materials. However fast computation techniques are needed to take decisions in a limited time-scale. Techniques based on standard computational homogenization are seriously compromised by the real-time constraint. The combination of model reduction techniques and high performance computing contribute to alleviate such a constraint but the amount of computation remains excessive in many cases. In this paper we consider an alternative route that makes use of techniques traditionally considered for machine learning purposes in order to extract the manifold in which data and fields can be interpolated accurately and in real-time and with minimum amount of online computation. Locallly Linear Embedding is considered in this work for the real-time thermal homogenization of heterogeneous microstructures

    Induction of auxin biosynthesis and WOX5 repression mediate changes in root development in Arabidopsis exposed to chitosan

    Get PDF
    [EN] Chitosan is a natural polymer with applications in agriculture, which causes plasma membrane permeabilisation and induction of intracellular reactive oxygen species (ROS) in plants. Chitosan has been mostly applied in the phylloplane to control plant diseases and to enhance plant defences, but has also been considered for controlling root pests. However, the effect of chitosan on roots is virtually unknown. In this work, we show that chitosan interfered with auxin homeostasis in Arabidopsis roots, promoting a 2-3 fold accumulation of indole acetic acid (IAA). We observed chitosan dose-dependent alterations of auxin synthesis, transport and signalling in Arabidopsis roots. As a consequence, high doses of chitosan reduce WOX5 expression in the root apical meristem and arrest root growth. Chitosan also propitiates accumulation of salicylic (SA) and jasmonic (JA) acids in Arabidopsis roots by induction of genes involved in their biosynthesis and signalling. In addition, high-dose chitosan irrigation of tomato and barley plants also arrests root development. Tomato root apices treated with chitosan showed isodiametric cells respect to rectangular cells in the controls. We found that chitosan causes strong alterations in root cell morphology. Our results highlight the importance of considering chitosan dose during agronomical applications to the rhizosphere.This work was supported by AGL 2015 66833-R Grant from the Spanish Ministry of Economy and Competitiveness Grant AGL 2015. We would like to thank Drs Isabel Lopez-Diaz and Esther Carrera for plant hormone quantitation (IBMCP, Valencia, Spain). Part of this work was filed for a patent (P201431399) by L. V. Lopez-Llorca, F. Lopez-Moya and N. Escudero as inventors. We would like to thank Dr Michael Kershaw (University of Exeter) for his English revision and critical comments of the manuscript. We also thank Ms Marta Suarez-Fernandez (University of Alicante) and Mr Alfonso Prieto for their technical support. All the authors reviewed and approved the manuscript.Lopez-Moya, F.; Escudero, N.; Zavala-Gonzalez, EA.; Esteve-Bruna, D.; Blazquez Rodriguez, MA.; Alabadí Diego, D.; Lopez-Llorca, LV. (2017). Induction of auxin biosynthesis and WOX5 repression mediate changes in root development in Arabidopsis exposed to chitosan. Scientific Reports. 7:1-14. https://doi.org/10.1038/s41598-017-16874-5S1147Savary, S., Ficke, A., Aubertot, J.-N. & Hollier, C. Crop losses due to diseases and their implications for global food production losses and food security. Food Sec. 4(4), 519–37 (2012).Pimentel, D., Zuniga, R. & Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 52(3), 273–88 (2005).El-Hadrami, A. & Adam, L. R. Hadrami El, I. & Daayf, F. Chitosan in plant protection. Mar. Drugs. 8(4), 968–987 (2010).Kumar, R. M. N. V. A review of chitin and chitosan applications. React. Funct. Poly. 46(1), 1–27 (2000).Mayakrishnan, V., Kannappan, P., Abdullah, N. & Ali, A. A. B. Cardioprotective activity of polysaccharides derived from marine algae: an overview. Trends Food Sci. Technol. 30, 98–104 (2013).Lopez-Moya, F. et al. Carbon and nitrogen limitation increase chitosan antifungal activity in Neurospora crassa and fungal human pathogens. Fun. Biol. 119(2-3), 154–69 (2015).Benhamou, N. & Theriault, G. Treatment with chitosan enhances resistance of tomato plants to the crown and root rot pathogen Fusarium oxysporum f. sp. radicis-lycopersici. Physiol Mol Plant Path. 44(1), 33–52 (1992).Ohta, K., Taniguchi, A., Konishi, N. & Hosoki, T. Chitosan treatment affects plant growth and flower quality in Eustoma grandiflorum. HortScience. 34(2), 233–234 (1999).Van, S. N., Minh, H. D. & Anh, D. N. Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffee in green house. Biocatal Agric Biotechnol. 2(4), 289–294 (2013).Kananont, N., Pichvangkura, R., Chanprame, S., Chadchawan, S. & Limpanavech, P. Chitosan specificity for the in vitro seed germination of two Dendrobium orchids (Asparagales: Orchidaceae). Sci. Hortic. 124(2), 239–247 (2010).Malerba, M. & Cerana, R. Chitosan Effects on Plant Systems. Int. J. Mol. Sci. 17(7), pii: E996 (2016).Uthairatanakij, A., da Silva, J. A. T. & Obsuwan, K. Chitosan for improving orchid production and quality. Orchid Sci. Biotechnol. 1(1), 1–5 (2007).Limpanavech, P. et al. Chitosan effects on floral production, gene expression, and anatomical changes in the Dendrobium orchid. Sci. Hortic. 116(1), 65–72 (2008).Nge, K. L., New, N., Chandrkrachang, S. & Stevens, W. F. Chitosan as a growth stimulator in orchid tissue culture. Plant Sci. 170(6), 1185–90 (2006).Khan, T. A., Peh, K. K. & Ch’ng, H. S. Reporting degree of deacetylation values of chitosan: the influence of analytical methods. J. Pharma. Sci. 5(3), 205–12 (2002).Iriti, M. & Faoro, F. Bioactivity of grape chemicals for human health. Nat. Prod. Commun. 4(5), 611–34 (2009).Pitta-Alvarez, S. I. & Giulietti, A. M. Influence of chitosan, acetic acid and citric acid on growth and tropane alkaloid production in transformed roots of Brugmansia candida effect of medium pH and growth phase. Plant Cell Tissue Organ Cult. 59(1), 31–38 (1999).Sivanandhan, G. et al. Chitosan enhances with anolides production in adventitious root cultures of Withania somnifera (L.) Dunal. Ind. Crops Prod. 37, 124–129 (2012).Chatelain, P. G., Pintado, M. E. & Vasconcelos, M. W. Evaluation of chitooligosaccharide application on mineral accumulation and plant growth in Phaseolus vulgaris. Plant Sci. 214(15), 134–40 (2014).El-Tantawi, E. M. Behaviour of tomato plants as affected by spraying with chitosan and aminofort as natural stimulator substances under application of soil organic amendments. Pak. J. Biol. Sci. 12(17), 1164–73 (2009).Sharp, R. G. 2013. A review of the applications of chitin and its derivatives in agriculture to modify plant-microbial interactions and improve crop yields. Agronomy. 3, 757–793 (2013).Aranega-Bou, P., de la O Leyva, M., Finiti, I., García-Agustín, P. & González-Bosch, C. Priming of plant resistance by natural compounds. Hexanoic acid as a model. Front. Plant Sci. 1(5), 488 (2014).Kwak, J. M., Nguyen, V. & Schroeder, J. I. The role of reactive oxygen species in hormonal responses. Plant Physiol. 141(2), 323–9 (2006).Lopez-Moya, F. & Lopez-Llorca, L. V. Omics for investigating chitosan as an antifungal and gene modulator. J. Fungi. 2(1), 1–11 (2016).Issak, M. et al. Neither endogenous abscisic acid nor endogenous jasmonate is involved in salicylic acid-, yeast elicitor-, orchitosan-induced stomatal closure in Arabidopsis thaliana. Biosc. Biotechnol. Biochem. 77(5), 1111–3 (2013).Vidhyasekaran, P. Switching on Plant Innate Immunity Signaling Systems: Bioengineering and Molecular Manipulation Of PAMP PIMP PRR Signaling Complex. Signaling and Communication In Plants. Chapt. 3. Switching on Plant Immune Signaling Systems using Microbe-Associated Molecular Patterns/section 3.6 Manipulation of Plant Immune System using Chitosan 144–148, (Springer, 2016).Baque, Md. A., Shiragi, Md. H. K., Lee, E. J. & Paek, K.-Y. Elicitor effect of chitosan and pectin on the biosynthesis of anthraquinones, phenolics and flavonoids in adventitious root suspension cultures of Morinda citrifolia (L.). Aust. J. Crop Sci. 6(9), 1349–1355 (2012).Khalil, M. S. & Badawy, M. E. I. Nematicidal activity of a biopolymer chitosan at different molecular weights against root-knot nematode. Meloidogyne incognita. Plant Prot. Sci. 48(4), 170–178 (2012).Sarkar, A. K. et al. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature. 446(7137), 811–4 (2007).Ding, Z. & Friml, J. Auxin regulates distal stem cell differentiation in Arabidopsis roots. Proc. Natl. Acad. Sci. USA 107(26), 12046–12051 (2010).Tian, H. et al. WOX5-IAA17 feedback circuit-mediated cellular auxin response is crucial for the patterning of root stem cell niches in Arabidopsis. Mol. Plant. 7(2), 277–89 (2014).Tiwari, S. B., Hagen, G. & Guilfoyle, T. The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell. 15(2), 533–43 (2003).Doares, S. H., Syrovets, T., Weiler, E. W. & Ryan, C. A. Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc. Natl. Acad. Sci. USA 92(10), 4095–4098 (1995).Chandra, S. et al. Chitosan nanoparticles: A positive modulator of innate immune responses in plants. Sci. Rep. 5, 15195 (2015).Escudero, N. et al. Chitosan enhances parasitism of Meloidogyne javanica eggs by the nematophagous fungus Pochonia chlamydosporia. Fun. Biol. 120(4), 572–85 (2016).Escudero, N. et al. Chitosan Increases Tomato Root Colonization by Pochonia chlamydosporia and Their Combination Reduces Root-Knot Nematode Damage. Front. Plant Sci. 8, 1415 (2017).Atkinson, N. J., Lilley, C. J. & Urwin, P. E. Identification of Genes Involved in the Response of Arabidopsis to Simultaneous Biotic and Abiotic Stresses. Plant Physiol. 162(4), 2028–2041 (2013).Kazan, K. Auxin and the integration of environmental signals into plant root development. Ann Bot 112(9), 1655–1665 (2013).Overvoorde, P., Fukaki, H. & Beeckman, T. Auxin control of root development. Cold Spring Harb. Perspect. Biol. 2(6), a001537 (2010).Petricka, J. J., Winter, C. M. & Benfey, P. N. Control of Arabidopsis Root Development. Ann. Rev. Plant Biol. 63, 563–590 (2012).Iriti, M. & Faoro, F. Chitosan as a MAMP, searching for a PRR. Plant Signal Behav. 4(1), 66–68 (2009).Jones, A. M. A new look at stress: abscisic acid patterns and dynamics at high-resolution. New Phytol. 210(1), 38–44 (2015).Wasternack, C. Jasmonates: An Update on Biosynthesis, Signal Transduction and Action in Plant Stress Response, Growth and Development. Ann. Bot. 100(4), 681–697 (2007).Wasternack, C. & Hause, B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. Ann. Bot. 111(6), 1021–1058 (2013).Kazan, K. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci. 20(4), 219–29 (2015).Ning, Y., Liu, W. & Wang, G. L. Balancing Immunity and Yield in Crop Plants. Trends Plant Sci., 1385(17), 30206–6 (2017). pii: S1360.Zhang, R. Q., Zhu, H. H., Zhao, H. Q. & Yao, Q. Arbuscular mycorrhizal fungal inoculation increases phenolic synthesis in clover roots via hydrogen peroxide, salicylic acid and nitric oxide signaling pathways. J. Plant Physiol. 170(1), 74–9 (2013).Dar, T. A., Uddin, M., Masroor, A. M., Hakeem, K. R. & Jaleel, H. 2015. Jasmonates counter plant stress: A Review. Environ. Exp. Bot. 115, 49–57 (2015).Kazan, K. & Lyons, R. 2016. The link between flowering time and stress tolerance. J Exp Bot. 67(1), 47–60 (2016).Jeong, S. et al. Rootin, a compound that inhibits root development through modulating PIN-mediated auxin distribution. Plant Sci. 233, 116–26 (2015).Amborabé, B. E., Bonmort, J., Fleurat-Lessard, P. & Roblin, G. Early events induced by chitosan on plant cells. J. Exp. Bot. 59(9), 2317–2324 (2008).Chen, X. Y. & Kim, J. Y. Callose synthesis in higher plants. Plant Signal Behav. 4(6), 489–492 (2009).Vasil’ev, L. A. et al. Chitosan-induced programmed cell death in plants. Biochem (Mosc). 74(9), 1035–43 (2009).Friml, J. et al. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature. 426(6963), 147–153 (2003).Xu, J. et al. A molecular framework for plant regeneration. Science. 311(5759), 385–8 (2006).Cheng, Y., Dai, X. & Zhao, Y. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev. 20(13), 1790–1799 (2006).Cao, H., Bowling, S. A., Gordon, A. S. & Dong, X. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of Systemic Acquired Resistance. Plant Cell. 6(11), 1583–92 (1994).Dobón, A., Wulff, B. B., Canet, J. V., Fort, P. & Tornero, P. An allele of Arabidopsis COI1 with hypo- and hypermorphic phenotypes in plant growth, defence and fertility. Plos One. 8(1), e55115 (2013).Fernández-Calvo, P. et al. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell. 23(2), 701–15 (2011).Ripoll, J. J., Ferrándiz, C., Martínez-Laborda, A. & Vera, A. PEPPER, a novel K-homology domain gene, regulates vegetative and gynoecium development in Arabidopsis. Dev. Biol. 289(2), 346–59 (2006).Bordallo, J. J. et al. Colonization of plant roots by egg-parasitic and nematode-trapping fungi. New Phytol. 154(2), 491–499 (2002).Palma-Guerrero, J., Jansson, H. B., Salinas, J. & Lopez-Llorca, L. V. Effect of chitosan on hyphal growth and spore germination of plant pathogenic and biocontrol fungi. J. App. Microbiol. 104(2), 541–53 (2008).Seo, M., Jikumaru, Y. & Kamiya, Y. Profiling of hormones and related metabolites in seed dormancy and germination studies. Methods Mol. Biol. 773, 99–111 (2011).Sabatini, S. et al. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell. 99, 463–472 (1999).Weigel, D. & Glazebrook, J. Arabidopsis: A Laboratory Manual. (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2002).Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 25, 402–408 (2001).Escudero, N. & Lopez-Llorca, L. V. Effects on plant growth and root-knot nematode infection of an endophytic GFP transformant of the nematophagous fungus Pochonia chlamydosporia. Symbiosis. 57(1), 33–42 (2012).Maciá-Vicente, J. G., Jansson, H. B., Talbot, N. J. & Lopez-Llorca, L. V. Real-time PCR quantification and live-cell imaging of endophytic colonization of barley (Hordeum ytvulgare) roots by Fusarium equiseti and Pochonia chlamydosporia. New Phytolo. 182(1), 213–28 (2009).Underwood, A. J. Experiments in ecology: their logical design and interpretation using analysis of variance. (Cambridge University Press, Cambridge, 1997).Bartlett, M. S. 1937. Properties of sufficiency and statistical tests. Proc. Royal. Soci. London Math. 160, 268–282 (1937)

    Deformation quantization of linear dissipative systems

    Full text link
    A simple pseudo-Hamiltonian formulation is proposed for the linear inhomogeneous systems of ODEs. In contrast to the usual Hamiltonian mechanics, our approach is based on the use of non-stationary Poisson brackets, i.e. corresponding Poisson tensor is allowed to explicitly depend on time. Starting from this pseudo-Hamiltonian formulation we develop a consistent deformation quantization procedure involving a non-stationary star-product t*_t and an ``extended'' operator of time derivative Dt=t+...D_t=\partial_t+..., differentiating the t\ast_t-product. As in the usual case, the t\ast_t-algebra of physical observables is shown to admit an essentially unique (time dependent) trace functional Trt\mathrm{Tr}_t. Using these ingredients we construct a complete and fully consistent quantum-mechanical description for any linear dynamical system with or without dissipation. The general quantization method is exemplified by the models of damped oscillator and radiating point charge.Comment: 14 pages, typos correcte
    corecore